

 GX8 Design Studio 外部機器の接続マニュアル 1 / 26

MODBUS Organization

MODBUS Master Series

MODBUS Serial Master Driver
2023/10/12 バージョン GX8 Design Studio V1.4 以上

CONTENTS

当社(株)ミスミのTouch Operation Panel(ミスミ GX8) Seriesをご使用いただ

きまして誠にありがとうございます。本マニュアルを読み、「GX8–外部機器」の接続方

法と手順をご確認ください。

1. システム構成 2 ページ

接続に必要な機器、各機器の設定、ケーブル、設定可能なシステ

ムについて説明します。

本項を参照し、適切なシステムを選定してください。

2. 外部機器の選択 ３ ページ

 GX8の機種と外部機器を選択します。

3. GX8通信設定 ４ ページ

 GX8の通信設定の方法について説明します。

外部機器の設定が変更された場合、本項を参照し GX8通信設

定と外部機器を同じ設定にしてください。

4. 外部機器の設定 11 ページ

 外部機器の通信設定方法について説明します。

5. ケーブル表 12 ページ

 接続に必要なケーブルの仕様について説明します。

「1.システムの構成」で選定したシステムに応じて適切なケーブルの仕

様を選択してください。

6. サポートアドレス 14 ページ

 本項を参照して、外部機器との通信可能なアドレスを確認してくださ

い。

 GX8 Design Studio 外部機器の接続マニュアル 2 / 26

1. システム構成

本ドライバは、MODBUS OrganizationのMODBUS Protocolのなか、Serial Master Driverです。

外部機器（MODBUS Slave Protocolサポート）に応じて、ドライバの「コマンドコード」、「プロトコルのフレーム形式」などを別途設定する必要があります。

この場合、通信方式に応じた詳細な設定を外部機器側に合わせて設定してください。

本ドライバがサポートする外部機器のシステム構成は以下の通りです。

シリーズ CPU Link I/F 通信方式 システム設定 ケーブル

MODBUS Slave Device

RS-232C

3. GX8通信設定

4. 外部機器の設定
5. ケーブル表 RS-422 (4 wire)

RS-485 (2 wire)

■接続構成

∙ 1：1（GX8 １台と外部機器１台）接続 – RS232C/422/485通信で可能な構成です。

∙ 1：N（GX8 1台と外部機器数台）接続 - RS422/485通信で可能な構成です。

 GX8 Design Studio 外部機器の接続マニュアル 3 / 26

2. 外部機器の選択

■ GX8モデル及びポートを選択した後、外部機器を選択します。

設定事項 内容

GX8 モデル GX8のディスプレイとプロセスを確認し、タッチモデルを選択します。

外部機器 メーカー GX8と接続する外部機器のメーカー｢MODBUS Organization」を選択します。

PLC GX8と接続する外部機器を選択します。

モデル インターフェイス プロトコル

MODBUS Master Series Serial ユーザー設定

サポートしているプロトコル

MODBUS RTU MODBUS ASCII

接続したい外部機器が、システムの構成可能な機種であることを1項のシステム構成で確認してください。

 GX8 Design Studio 外部機器の接続マニュアル 4 / 26

3. GX8通信設定

通信設定はGX8 Design Studio、またはGX8メインメニューから設定可能です。通信設定は外部機器と同一に設定する必要があります。

3.1 GX8 Design Studioでの通信設定

(1) 通信インタフェースの設定

■[プロジェクト>プロジェクトのプロパティ>GX8設定]→[プロジェクトオプション>「HMIの設定使用」チェック>編集>シリアル]

– GX8通信インタフェースをGX8 Design Studioで設定します。

項目 GX8 外部機器 備 考

信号レベル（ポート） RS-232C

RS-422/485

RS-232C

RS-422/485

ボーレート 38400

データビット 8

ストップビット 1

パリティビット 無

※上記の内容は、当社が推奨する設定例です。

 項目 説明

信号レベル GX8 - 外部機器間のシリアル通信方式を選択します。

ボーレート GX8 - 外部機器間のシリアル通信速度を選択します。

データビット GX8 - 外部機器間のシリアル通信のデータビットを選択します。

ストップビット GX8 - 外部機器間のシリアル通信ストップビットを選択します。

パリティビット GX8 - 外部機器間のシリアル通信のパリティビットを確認する方法を選択します。

 GX8 Design Studio 外部機器の接続マニュアル 5 / 26

(2) 通信オプションの設定

 ■[プロジェクト > プロジェクトのプロパティ > PLC設定 > COM1 > PLC1 : MODBUS Master Series]

– MODBUS Serial Master 通信ドライバのオプションをGX8 Design Studioで設定します。

項目 設定 備考

インタフェース Serialを選択します。
「2. 外部機器

の選択」参考
プロトコル GX8 - 外部機器間の通信プロトコルを選択します。

MODBUS ASCIIとMODBUS RTUの2種類があります。

文字列の保存モード 文字列を使用時に文字列の配列を指定します。

冗長使用 二種類のオプションを使うときに使用します。

変更条件は：Primary – Secondary変更条件を設定します。

演算条件で変更条件に対する演算条件を設定します。

AND : チェックされた変更条件が全て満足すると Primary–Secondary 変更

OR : チェックされた変更条件の１つでも満足するとPrimary–Secondary 変更

TimeOut (ms) GX8の外部機器からの応答を待つ時間を設定します。

SendWait (ms)
GX8の外部機器からの応答を受信し、次のコマンド要求の送信までの待機時間を

設定します。

Retry 通信障害時の再試行の回数を設定します。

Slave Station Num 外部機器の局番を入力します。

Address Mode アドレスの方式を選択します。

1-base : 装備のメモリアドレスが１から始まる。登録されたアドレス-1にデータ要請

0-base : 装備のメモリアドレスが0から始まる。登録されたアドレス-データ要請

Address Notation アドレス表記方式を選択します。

[0 Device Option] Coil (R/W)

Max Read Count Coilを読み取り要請時１回に要請できる最大数を設定します。 *注1) *注2)

Write Function Coil書き込み要請命令語を設定します。 *注3)

 GX8 Design Studio 外部機器の接続マニュアル 6 / 26

0x05 : Force Single Coil (1ビット単位で書き込み。ビット単位動作のみ可能)

0x0F : Force Multiple Coils (16ビット単位で書き込み)

Auto : データ数によって0x05/0x0F要請

Max Write Count Coilの書き込み要請時最大要請数を設定します。 *注2)

Read Bit Unit Coil読み取り要請時要請するビット数を設定します。

設定値が16で画面に続くアドレスが登録された場合１回に最大”Max Read Count”数分

データを要請します。

[1 Device Option] Discrete Input (READ ONLY)

Max Read Count Discrete Input読み取り要請時１回に要請できる最大数を設定します。 *注1) *注2)

Read Bit Unit Discrete Input読み取り要請時要請するビット数を設定します。

設定値が16でで画面に続くアドレスが登録された場合一回に最大”Max Read Count”数

分データを要請します。

[3 Device Option] Input Register(READ ONLY)

Max Read Count Input Register読み取り要請時１回に要請できる最大数を設定します。 *注1) *注2)

[4 Device Option] Holding Register(R/W)

Max Read Count Holding Register読み取り要請時１回に要請できる最大数を設定します。 *注1)

Write Function

Holding Register書き込み要請命令語を設定します。

0x06 : Preset Single Register (1個書き込み)

0x10 : Preset Multiple Registers (N個書き込み)

Auto : データ数によって0x06/0x10に要請

*注3)

Max Write Count 命令語を0x10にHolding Registerデータ書き込み要請時１回に要請できる最大数を設

定します。
*注2)

*注1)

- 各デバイスのMax Read Countは画面に登録されたアドレスたちが連続していない通信を南海することではなく１回に要請するアドレス範囲としても使用

されます。

例1)画面に数字オブジェクトで400001, 400002, 400003, 400004, 400005, 400120を登録し4デバイスのMax Read Countを120に設定

する場合400001から400120までを連続したアドレスに仮定し400001から120ワードを一回の要請で読み取ります。

例２) 画面に数字オブジェクトで400001, 400002, 400003, 400004, 400005, 400120を登録し4デバイスのMax Read Countを3に設定す

る場合400001から400003まで3ワード、400004から400005まで２ワード、400120の１ワードとして３回の要請でデータを読み取ります。

例３) 画面に数字オブジェクトで400001, 400010, 400011, 400021, 400031, 400041を登録し4デバイスのMax Read Countを10に設定し

た場合400001から400010まで10ワード400011 1ワード、 400021 1ワード、400031 1ワード、 400041 1ワードとして５回の要請でデータを読み

取ります。

*注2)

- 外部装置のマニュアルを参考し登録したアドレスか一回に何個のデータの読み取り/書き込みが可能か確認してください。

外部装置が支援している範囲より大きく設定する場合通信が正常的に行割れられません。

例)外部装置のHolding Register(4デバイス)が１回の通信に最大１０ワードのみ応答可能な場合、GX8の通信設定の4デバイスMax Read Count

を外部装置に合わせ10に設定してください。

*注3)

- 外部装置のマニュアルを参考し支援する書き込み命令語に合わせて設定してください。

支援していない書き込み命令語を設定するとデータの書き込み動作が行われません。

 GX8 Design Studio 外部機器の接続マニュアル 7 / 26

3.2 GX8での通信設定

※「3.1 GX8 Design Studioでの通信設定」の「HMIの設定を使用する」をチェックしていない場合の設定方法です。

■GX8 画面上部をタッチして下にドラッグします。ポップアップウィンドウの「EXIT」をタッチして、メイン画面に移動します。

(1) 通信インタフェースの設定

■[メイン画面 > コントロールパネル > シリアル]

項目 GX8 外部機器 備 考

信号レベル（ポート） RS-232C

RS-422/485

RS-232C

RS-422/485

ボーレート 38400

データビット 8

ストップビット 1

パリティビット 無

※上記の内容は、当社が推奨する設定例です。

 項目 説明

信号レベル GX8 - 外部機器間のシリアル通信方式を選択します。

ボーレート GX8 - 外部機器間のシリアル通信速度を選択します。

データビット GX8 - 外部機器間のシリアル通信のデータビットを選択します。

ストップビット GX8 - 外部機器間のシリアル通信ストップビットを選択します。

パリティビット GX8 - 外部機器間のシリアル通信のパリティビットを確認する方法を選択します。

 GX8 Design Studio 外部機器の接続マニュアル 8 / 26

 (2) 通信オプションの設定

■[メイン画面 > コントロールパネル > PLC]

項目 設定 備考

インタフェース Serialを選択します。
「2. 外部機器

の選択」参考
プロトコル GX8 - 外部機器間の通信プロトコルを選択します。

MODBUS ASCIIとMODBUS RTUの2種類があります。

文字列の保存モード 文字列を使用時に文字列の配列を指定します。

冗長使用 二種類のオプションを使うときに使用します。

変更条件は：Primary – Secondary変更条件を設定します。

演算条件で変更条件に対する演算条件を設定します。

AND : チェックされた変更条件が全て満足すると Primary–Secondary 変更

OR : チェックされた変更条件の１つでも満足するとPrimary–Secondary 変更

TimeOut (ms) GX8の外部機器からの応答を待つ時間を設定します。

SendWait (ms)
GX8の外部機器からの応答を受信し、次のコマンド要求の送信までの待機時間を

設定します。

Retry 通信障害時の再試行の回数を設定します。

Slave Station Num 外部機器の局番を入力します。

Address Mode アドレスの方式を選択します。

1-base : 装備のメモリアドレスが１から始まる。登録されたアドレス-1にデータ要請

0-base : 装備のメモリアドレスが0から始まる。登録されたアドレス-データ要請

Address Notation アドレス表記方式を選択します。

[0 Device Option] Coil (R/W)

Max Read Count Coilを読み取り要請時１回に要請できる最大数を設定します。 *注1) *注2)

Write Function

Coil書き込み要請命令語を設定します。

0x05 : Force Single Coil (1ビット単位で書き込み。ビット単位動作のみ可能)

0x0F : Force Multiple Coils (16ビット単位で書き込み)

Auto : データ数によって0x05/0x0F要請

*注3)

Max Write Count Coilの書き込み要請時最大要請数を設定します。 *注2)

Read Bit Unit Coil読み取り要請時要請するビット数を設定します。

設定値が16で画面に続くアドレスが登録された場合１回に最大”Max Read Count”数分

データを要請します。

[1 Device Option] Discrete Input (READ ONLY)

 GX8 Design Studio 外部機器の接続マニュアル 9 / 26

Max Read Count Discrete Input読み取り要請時１回に要請できる最大数を設定します。 *注1) *注2)

Read Bit Unit Discrete Input読み取り要請時要請するビット数を設定します。

設定値が16でで画面に続くアドレスが登録された場合一回に最大”Max Read Count”数

分データを要請します。

[3 Device Option] Input Register(READ ONLY)

Max Read Count Input Register読み取り要請時１回に要請できる最大数を設定します。 *注1) *注2)

[4 Device Option] Holding Register(R/W)

Max Read Count Holding Register読み取り要請時１回に要請できる最大数を設定します。 *注1)

Write Function

Holding Register書き込み要請命令語を設定します。

0x06 : Preset Single Register (1個書き込み)

0x10 : Preset Multiple Registers (N個書き込み)

Auto : データ数によって0x06/0x10に要請

*注3)

Max Write Count 命令語を0x10にHolding Registerデータ書き込み要請時１回に要請できる最大数を設

定します。
*注2)

*注1)

- 各デバイスのMax Read Countは画面に登録されたアドレスたちが連続していない通信を南海することではなく１回に要請するアドレス範囲としても使用

されます。

例1)画面に数字オブジェクトで400001, 400002, 400003, 400004, 400005, 400120を登録し4デバイスのMax Read Countを120に設定

する場合400001から400120までを連続したアドレスに仮定し400001から120ワードを一回の要請で読み取ります。

例２) 画面に数字オブジェクトで400001, 400002, 400003, 400004, 400005, 400120を登録し4デバイスのMax Read Countを3に設定す

る場合400001から400003まで3ワード、400004から400005まで２ワード、400120の１ワードとして３回の要請でデータを読み取ります。

例３) 画面に数字オブジェクトで400001, 400010, 400011, 400021, 400031, 400041を登録し4デバイスのMax Read Countを10に設定し

た場合400001から400010まで10ワード400011 1ワード、 400021 1ワード、400031 1ワード、 400041 1ワードとして５回の要請でデータを読み

取ります。

*注2)

- 外部装置のマニュアルを参考し登録したアドレスか一回に何個のデータの読み取り/書き込みが可能か確認してください。

外部装置が支援している範囲より大きく設定する場合通信が正常的に行割れられません。

例)外部装置のHolding Register(4デバイス)が１回の通信に最大１０ワードのみ応答可能な場合、GX8の通信設定の4デバイスMax Read Count

を外部装置に合わせ10に設定してください。

*注3)

- 外部装置のマニュアルを参考し支援する書き込み命令語に合わせて設定してください。

支援していない書き込み命令語を設定するとデータの書き込み動作が行われません。

 GX8 Design Studio 外部機器の接続マニュアル 10 / 26

3.3 通信診断

■GX8 - 外部機器間のインタフェースの設定の状態を確認

- GX8画面上部をタッチして下にドラッグ。ポップアップウィンドウの「EXIT」をタッチして、メイン画面に移動する

- [コントロールパネル>シリアル]で使用するポート（COM1/COM2/COM3）の設定が、外部装置の設定内容と同じであることを確認す

る。

■ポートの通信異常の有無の診断

- [コントロールパネル> PLC]で「通信診断」をタッチする。

- 画面上にDiagnosticsダイアログボックスがポップアップし、診断の状態を表示する。

OK 通信設定の正常

Time Out Error 通信設定の異常

-ケーブルとGX8、外部機器の設定状態を確認する。（参照：通信診断シート）

■通信診断シート

 -外部端末との通信接続に問題がある場合は、以下のシートの設定内容を確認してください。

項目 内容 確認 参考

システム構成

システムの接続方法 OK NG
1. システム構成

接続ケーブルの名称 OK NG

GX8 バージョン情報 OK NG

2. 外部機器の選択

3. GX8通信設定

使用ポート OK NG

ドライバ名称 OK NG

その他の詳細設定情報 OK NG

相手局番

プロジェクトの設

定
OK NG

通信診断 OK NG

シリアルパラメータ 転送速度 OK NG

データビット OK NG

ストップビット OK NG

パリティビット OK NG

外部機器 CPUの名称 OK NG

4. 外部機器の設定

通信ポートの名称（モジュール名） OK NG

プロトコル（モード） OK NG

設定局番 OK NG

その他の詳細設定情報 OK NG

シリアルパラメータ 転送速度 OK NG

データビット OK NG

ストップビット OK NG

パリティビット OK NG

アドレス範囲チェック

OK NG

6. サポートアドレス

(詳細については、PLCメーカーのマニュア

ルを参照してください。)

 GX8 Design Studio 外部機器の接続マニュアル 11 / 26

4. 外部機器の設定

外部機器のユーザーマニュアルを参照し、外部機器I / Fに「MODBUS Serial Slave Driver」を設定してください。

- Protocol Frame形式でRTU/ ASCIIモード選定に注意してください。

- 外部機器側のアドレスマップの内容を確認し、その内容に応じて通信アドレスを使用してください

 GX8 Design Studio 外部機器の接続マニュアル 12 / 26

5. ケーブル表

本ChapterはGX8と該当機器の間、通常の通信のためのケーブル図を紹介します。

（本項で説明されているケーブルの図は、外部機器メーカーの推奨事項とは異なる場合があります）

■ RS-232C（1:1接続）

COM1 / COM2
ケーブル接続

PLC

ピン配列*注1) 信号名 ピン番号 信号名

ケーブルコネクタ前

面基準

D-SUB 9 Pin

male(数、凸)

CD 1

RD 2 SD

SD 3 RD

DTR 4 DTR

SG 5 SG

DSR 6 DSR

RTS 7 RTS

CTS 8 CTS

 9

*注1) ピン配列はケーブル接続コネクタの接続面から見たものです。

■ RS-422 （1:1接続）

COM1 / COM2
ケーブル接続

PLC

ピン配列*注1) 信号名 ピン番号 信号名

ケーブルコネクタ前

面基準

D-SUB 9 Pin

male(数、凸)

RDA(+) 1 SDA(+)

 2 SDB(-)

 3 RDA(+)

RDB(-) 4 RDB(-)

SG 5 SG

SDA(+) 6

 7

 8

SDB(-) 9

*注1) ピン配列はケーブル接続コネクタの接続面から見たものです。

■ RS-485（1:1接続）

COM1 / COM2
ケーブル接続

PLC

ピン配列*注1) 信号名 ピン番号 信号名

ケーブルコネクタ前

面基準

D-SUB 9 Pin

male(数、凸)

RDA(+) 1 +

 2 -

 3

RDB(-) 4

SG 5

SDA(+) 6

 7

 8

SDB(-) 9

*注1) ピン配列はケーブル接続コネクタの接続面から見たものです。

☞ 次ページに続く

 GX8 Design Studio 外部機器の接続マニュアル 13 / 26

■ RS-485 （1:1接続）

COM3
ケーブル接続

PLC

ピン配列 信号名 信号名

+ SDA(+)

- SDB(-)

SG RDA(+)

RDB(-)

SG

■ RS-422 （1:Ｎ接続）– 1:1接続を参考にして、以下の方法で接続してください。

GX8
ケーブル接続と信号方向

PLC
ケーブル接続と信号方向

PLC

信号名 信号名 信号名

RDA(+)

SDA(+)

SDA(+)

RDB(-) SDB(-) SDB(-)

SDA(+) RDA(+) RDA(+)

SDB(-) RDB(-) RDB(-)

SG SG SG

■ RS-485 （1:Ｎ/Ｎ:1接続）1：1接続を参考にして、以下の方法で接続してください。

GX8
ケーブル接続と信号方向

PLC
ケーブル接続と信号方向

PLC

信号名 信号名 信号名

RDA(+) + +

RDB(-) - -

SDA(+)

SDB(-)

SG

 GX8 Design Studio 外部機器の接続マニュアル 14 / 26

6. サポートアドレス

GX8で使用可能な機器は、以下の通りです。

CPUモジュールシリーズ/タイプに応じて、機器の範囲（アドレス）の差があることがあります。GX8シリーズは、外部機器シリーズが使用する

最大アドレス範囲をサポートします。使用する機器がサポートしているアドレス範囲を超えないように各CPUモジュールユーザーマニュアルを参

照して/注意してください。

Bit Address Word Address 32 bits Remarks

Coil 000001 – 065536 000001 – 065521

L/H

Discrete Input 100001 – 165536 100001 – 165521 *注1)

Input Register 300001.00 – 365536.15 300001 – 365536 *注1)

Holding Register 400001.00 – 465536.15 400001 – 465536

*注1）書き込み不可（読み取り専用）

 GX8 Design Studio 外部機器の接続マニュアル 15 / 26

Appendix A. Standard MODBUS Protocol

本機の「MODBUS Serial Master Driver」がサポートしているMODBUSプロトコルコマンドと機器について説明します。

At the message level, the MODBUS protocol still applies the master–slave principle even though the network

communication method is peer–GX8eer. If a controller originates a message, it does so as a master device, and expects a

response from a slave device. Similarly, when a controller receives a message it constructs a slave response and returns it

to the originating controller.

The Query: The function code in the query tells the addressed slave device what kind of action GX8erform. The data bytes

contain any additional information that the slave will need GX8erform the function. For example, function code 03 will query

the slave to read holding registers and respond with their contents. The data field must contain the information telling the

slave which register to start at and how many registers to read. The error check field provides a method for the slave to

validate the integrity of the message contents.

The Response: If the slave makes a normal response, the function code in the response is an echo of the function code in

the query. The data bytes contain the data collected by the slave, such as register values or status. If an error occurs, the

function code is modified to indicate that the response is an error response, and the data bytes contain a code that

describes the error. The error check field allows the master to confirm that the message contents are valid.

 GX8 Design Studio 外部機器の接続マニュアル 16 / 26

A.1 “0” Device (Coil)

Read Single Coil : 01

MASTER機器のSlave機器側（局番：17番）の「000020-000056 Coil」データを読み取る例により、「01」コマンドフレームを説明します。

■ RTU Mode

（Master → Slave : 要求フレーム）

C
o
m

m
e
n
t

S
la

v
e

局
番

コ
マ
ン
ド

先
頭
機
器

機
器
点
数

チ
ェ
ッ
ク
コ
ー
ド

（
Ｃ
Ｒ
Ｃ
）

 Ｈ Ｌ Ｈ Ｌ Ｌ Ｈ

Hex 11 01 00 13 00 25 –– ––

（Slave → Master : 応答フレーム）

C
o
m

m
e
n
t

S
la

v
e

局
番

コ
マ
ン
ド

デ
ー
タ
数(b

y
te

)

データ チ
ェ
ッ
ク
コ
ー
ド
（
Ｃ

Ｒ
Ｃ
）

C
o
ils

2
7
~

2
0

C
o
ils

3
5
~

2
8

C
o
ils

4
3
~

3
6

C
o
ils

5
1
~

4
4

C
o
ils

5
6
~

5
2

 L – – – H Ｌ Ｈ

Hex
11 01 05 C

D

6

B

B2 0E 1B –– ––

■ ASCII Mode

（Master → Slave : 要求フレーム ）

co
m

m
e
n
t

H
e
a
d
e
r

S
la

v
e

局
番

コ
マ
ン
ド

先
頭
機
器

機
器
点
数

チ
ェ
ッ
ク
コ
ー
ド
（
Ｌ

Ｒ
Ｃ
）

T
a
il

 H L H L H – – L H – – L Ｌ Ｈ

ASCI

I

: 1 1 0 1 0 0 1 3 0 0 2 5 C

R

LF

Hex
3A 31 31 30 31 30 30 31 33 30 30 32 35 –– –– 0

D

0A

（Slave → Master : 応答フレーム）

C
o
m

m
e
n
t

H
e
a
d
e
r

S
la

v
e

局
番

コ
マ
ン
ド

デ
ー
タ
数(b

y
te

)

データ
チ
ェ
ッ
ク
コ
ー
ド

（
Ｌ
Ｒ
Ｃ
）

T
a
il

C
o
ils

2
7
~

2
0

C
o
ils

3
5
~

2
8

C
o
ils

4
3
~

3
6

C
o
ils

5
1
~

4
4

C
o
ils

5
6
~

5
2

 H L H L H L H L H L Ｌ Ｈ

ASCI

I

: 1 1 0 1 0 5 C D 6 B B 2 0 E 1 B C

R

LF

Hex
3A 31 31 30 31 30 35 43 44 36 42 42 32 30 45 31 42 –– –– 0

D

0A

■ Coils データの状態

Coils 27 26 25 24 23 22 21 20

on/off 1 1 0 0 1 1 0 1

Coils 35 34 33 32 31 30 29 28

on/off 0 1 1 0 1 0 1 1

Coils 43 42 41 40 39 38 37 36

on/off 1 0 1 1 0 0 1 0

Coils 51 50 49 48 47 46 45 44

on/off 0 0 0 0 1 1 1 0

Coils 59 58 57 56 55 54 53 52

on/off – – – 1 1 0 1 1

0: OFF / 1:ON

 GX8 Design Studio 外部機器の接続マニュアル 17 / 26

Force Single Coil : 05

MASTER機器のSlave機器側のCoil 000173にFORCE「ON」にした例により、「05」コマンドフレームを説明します。

■ RTU Mode

（Master → Slave : 要求フレーム ）

C
o
m

m
e
n
t

S
la

v
e

局
番

コ
マ
ン
ド

先
頭
機
器

F
o
rc

e
 d

a
ta

チ
ェ
ッ
ク
コ
ー
ド

（
Ｃ
Ｒ
Ｃ
）

 Ｈ Ｌ Ｈ Ｌ Ｌ Ｈ

Hex
11 05 00 A

C

FF 00 –– ––

（Slave → Master : 応答フレーム）

C
o
m

m
e
n
t

S
la

v
e

局
番

コ
マ
ン
ド

先
頭
機
器

F
o
rc

e
 d

a
ta

チ
ェ
ッ
ク
コ
ー
ド

（
Ｃ
Ｒ
Ｃ
）

 Ｈ Ｌ Ｈ Ｌ Ｌ Ｈ

Hex
11 05 00 A

C

FF 00 –– ––

■ ASCII Mode

（Master → Slave : 要求フレーム ）

co
m

m
e
n
t

H
e
a
d
e
r

S
la

v
e

局
番

コ
マ
ン
ド

先
頭
機
器

F
o
rce

 d
a
ta

チ
ェ
ッ
ク
コ
ー
ド

（
Ｌ
Ｒ
Ｃ
）

T
a
il

 H L H L H – – L H – – L Ｌ Ｈ

ASCI

I

: 1 1 0 5 0 0 1 3 0 0 2 5 C

R

LF

Hex
3A 31 31 30 31 30 30 41 43 45 45 30 30 –– –– 0

D

0A

（Slave → Master : 応答フレーム）
c
o
m

m
e
n
t

H
e
a
d
e
r

S
la

v
e

局
番

コ
マ
ン
ド

先
頭
機
器

F
o
rce

 d
a
ta

チ
ェ
ッ
ク
コ
ー
ド

（
Ｌ
Ｒ
Ｃ
）

T
a
il

 H L H L H – – L H – – L Ｌ Ｈ

ASCI

I

: 1 1 0 5 0 0 1 3 0 0 2 5 C

R

LF

Hex
3A 31 31 30 31 30 30 41 43 45 45 30 30 –– –– 0

D

0A

■ Force Data

 High Low

Force ON FFH 00H

Force OFF 00H 00H

 GX8 Design Studio 外部機器の接続マニュアル 18 / 26

A.2 “1” Device (Discrete Input)

Read Input Status : 02

MASTER機器のSlave機器側（局番：17番）の「100197-100218 Input」データを読み取る例により、「02」コマンドフレームを説明します。

■ RTU Mode

（Master → Slave : 要求フレーム ）

C
o
m

m
e
n
t

S
la

v
e

局
番

コ
マ
ン
ド

先
頭
機
器

機
器
点
数

チ
ェ
ッ
ク
コ
ー
ド

（
Ｃ
Ｒ
Ｃ
）

 Ｈ Ｌ Ｈ Ｌ Ｌ Ｈ

Hex 11 02 00 C4 00 16 –– ––

（Slave → Master : 応答フレーム）

C
o
m

m
e
n
t

S
la

v
e

局
番

コ
マ
ン
ド

デ
ー
タ
数(b

y
te

)

データ(Inputs) チ
ェ
ッ
ク
コ
ー
ド

（
Ｃ
Ｒ
Ｃ
）

1
0
2
0
4
~

1
0
1
9

7

1
0
2
1
2
~

1
0
2
0

5

1
0
2
1
8
~

1
0
2
1

3

 Ｌ Ｈ

Hex
11 02 03 A

C

D

B

35 –– ––

■ ASCII Mode

（Master → Slave : 要求フレーム ）

co
m

m
e
n
t

H
e
a
d
e
r

S
la

v
e

局
番

コ
マ
ン
ド

先
頭
機
器

機
器
点
数

チ
ェ
ッ
ク
コ
ー
ド

（
Ｌ
Ｒ
Ｃ
）

T
a
il

 H L H L H – – L H – – L Ｌ Ｈ

ASCI

I

: 1 1 0 2 0 0 C 4 0 0 1 6 C

R

LF

Hex
3A 31 31 30 32 30 30 43 34 30 30 31 36 –– –– 0

D

0A

（Slave → Master : 応答フレーム）

C
o
m

m
e
n
t

H
e
a
d
e
r

S
la

v
e

局
番

コ
マ
ン
ド

デ
ー
タ
数(b

y
te

)

データ(Inputs)
チ
ェ
ッ
ク
コ
ー
ド

（
Ｌ
Ｒ
Ｃ
）

T
a
il

1
0
2
0
4
~

1
0
1
9

7

1
0
2
1
2
~

1
0
2
0

5

1
0
2
1
8
~

1
0
2
1

3

 H L H L H L Ｌ Ｈ

ASCI

I

: 1 1 0 2 0 3 A C D B 3 5 C

R

LF

Hex
3A 31 31 30 31 30 35 41 43 44 42 33 35 –– –– 0

D

0A

■ Coils データの状態

Coils 204 203 202 201 200 199 198 197

on/off 1 0 1 0 1 1 0 0

Coils 212 211 210 209 208 207 206 205

on/off 1 1 0 1 1 0 1 1

Coils 220 219 218 217 216 215 214 213

on/off – – 1 1 0 1 0 1

0: OFF / 1:ON

 GX8 Design Studio 外部機器の接続マニュアル 19 / 26

A.3 “3” Device (Input Register)

Read Input Registers : 04

MASTER機器のSlave機器側（局番：17番）の「300009 Register」データを読み取る例により、「03」コマンドフレームを説明します。

■ RTU Mode

（Master → Slave : 要求フレーム ）

C
o
m

m
e
n
t

S
la

v
e

局
番

コ
マ
ン
ド

先
頭
機
器

機
器
点
数

(W
o
rd

 C
o
u
n
t)

チ
ェ
ッ
ク
コ
ー
ド

（
Ｃ
Ｒ
Ｃ
）

 Ｈ Ｌ Ｈ Ｌ Ｌ Ｈ

Hex 11 04 00 08 00 01 –– ––

（Slave → Master : 応答フレーム）

C
o
m

m
e
n
t

S
la

v
e

局
番

コ
マ
ン
ド

デ
ー
タ
数(b

y
te

)

データ
チ
ェ
ッ
ク
コ
ー
ド

（
Ｃ
Ｒ
Ｃ
）

R
e
g
iste

r

3
0
0
0
9

 Ｈ Ｌ Ｌ Ｈ

Hex
11 04 02 00 0

A

–– ––

■ ASCII Mode

（Master → Slave : 要求フレーム ）

co
m

m
e
n
t

H
e
a
d
e
r

S
la

v
e

局
番

コ
マ
ン
ド

先
頭
機
器

機
器
点
数

(W
o
rd

)

チ
ェ
ッ
ク
コ
ー
ド

（
Ｌ
Ｒ
Ｃ
）

T
a
il

 H L H L H – – L H – – L Ｌ Ｈ

ASCI

I

: 1 1 0 1 0 0 0 8 0 0 0 1 C

R

LF

Hex
3A 31 31 30 31 30 30 30 38 30 30 30 31 –– –– 0

D

0A

（Slave → Master : 応答フレーム）

C
o
m

m
e
n
t

H
e
a
d
e
r

S
la

v
e

局
番

コ
マ
ン
ド

デ
ー
タ

数(b
y
te

)

データ
チ
ェ
ッ
ク
コ
ー
ド

（
Ｌ
Ｒ
Ｃ
）

T
a
il

R
e
g
iste

r

4
0
1
0
8

 H – – L Ｌ Ｈ

ASCI

I

: 1 1 0 4 0 2 0 0 0 A C

R

LF

Hex
3A 31 31 30 31 30 35 30 30 30 41 –– –– 0

D

0A

 GX8 Design Studio 外部機器の接続マニュアル 20 / 26

A.4 “4” Device (Holding Register)

Read Holding Registers : 03

MASTER機器のSlave機器側（局番：17）の「400108 - 400110 Register」データを読み取る例により、「03」コマンドフレームを説明します。

■ RTU Mode

（Master → Slave : 要求フレーム ）

C
o
m

m
e
n
t

S
la

v
e

局
番

コ
マ
ン
ド

先
頭
機
器

機
器
点
数

チ
ェ
ッ
ク
コ
ー
ド

（
Ｃ
Ｒ
Ｃ
）

 Ｈ Ｌ Ｈ Ｌ Ｌ Ｈ

Hex 11 03 00 6B 00 03 –– ––

（Slave → Master : 応答フレーム）

C
o
m

m
e
n
t

S
la

v
e

局
番

コ
マ
ン
ド

デ
ー
タ
数(b

y
te

)

データ
チ
ェ
ッ
ク
コ
ー
ド

（
Ｃ
Ｒ
Ｃ
）

R
e
g
iste

r

4
0
1
0
8

R
e
g
iste

r

4
0
1
0
9

R
e
g
iste

r

4
0
1
1
0

 Ｈ Ｌ Ｈ Ｌ Ｈ Ｌ Ｌ Ｈ

Hex
11 03 06 02 2

B

00 00 00 64 –– ––

■ ASCII Mode

（Master → Slave : 要求フレーム ）

co
m

m
e
n
t

H
e
a
d
e
r

S
la

v
e

局
番

コ
マ
ン
ド

先
頭
機
器

機
器
点
数

(W
o
rd

)

チ
ェ
ッ
ク
コ
ー
ド

（
Ｌ
Ｒ
Ｃ
）

T
a
il

 H L H L H – – L H – – L Ｌ Ｈ

ASCI

I

: 1 1 0 1 0 0 1 3 0 0 2 5 C

R

LF

Hex
3A 31 31 30 31 30 30 31 33 30 30 32 35 –– –– 0

D

0A

（Slave → Master : 応答フレーム）

C
o
m

m
e
n
t

H
e
a
d
e
r

S
la

v
e

局
番

コ
マ
ン
ド

デ
ー
タ
数(b

y
te

)

データ
チ
ェ
ッ
ク
コ
ー
ド

（
Ｌ
Ｒ
Ｃ
）

T
a
il

R
e
g
iste

r

4
0
1
0
8

R
e
g
iste

r

4
0
1
0
9

R
e
g
iste

r

4
0
1
1
0

 H – – L H – – L H – – L Ｌ Ｈ

ASCI

I

: 1 1 0 3 0 6 0 2 2 B 0 0 0 0 0 0 6 4 C

R

LF

Hex
3A 31 31 30 31 30 35 30 32 32 42 30 30 30 30 30 30 36 34 –– –– 0

D

0A

 GX8 Design Studio 外部機器の接続マニュアル 21 / 26

Preset Single Register : 06

Slave機器側の400002 Registerに0003（hex）データを入力する例により、「06」コマンドフレームを説明します。

■ RTU Mode

（Master → Slave : 要求フレーム ）

C
o
m

m
e
n
t

S
la

v
e

局
番

コ
マ
ン
ド

先
頭
機
器

P
re

se
t d

a
ta

チ
ェ
ッ
ク
コ
ー
ド

（
Ｃ
Ｒ
Ｃ
）

 Ｈ Ｌ Ｈ Ｌ Ｌ Ｈ

Hex 11 06 00 01 00 03 –– ––

（Slave → Master : 応答フレーム）

C
o
m

m
e
n
t

S
la

v
e

局
番

コ
マ
ン
ド

先
頭
機
器

P
re

se
t d

a
ta

チ
ェ
ッ
ク
コ
ー
ド

（
Ｃ
Ｒ
Ｃ
）

 Ｈ Ｌ Ｈ Ｌ Ｌ Ｈ

Hex 11 06 00 01 00 03 –– ––

■ ASCII Mode

（Master → Slave : 要求フレーム ）

co
m

m
e
n
t

H
e
a
d
e
r

S
la

v
e

局
番

コ
マ
ン
ド

先
頭
機
器

P
re

se
t d

a
ta

チ
ェ
ッ
ク
コ
ー
ド

（
Ｃ
Ｒ
Ｃ
）

T
a
il

 H L H L H – – L H – – L Ｌ Ｈ

ASCI

I

: 1 1 0 6 0 0 0 1 0 0 0 3 C

R

LF

Hex
3A 31 31 30 36 30 30 30 31 30 30 30 33 –– –– 0

D

0A

（Slave → Master : 応答フレーム）

c
o
m

m
e
n
t

H
e
a
d
e
r

S
la

v
e

局
番

コ
マ
ン
ド

先
頭
機
器

P
re

se
t d

a
ta

チ
ェ
ッ
ク
コ
ー
ド

（
Ｃ
Ｒ
Ｃ
）

T
a
il

 H L H L H – – L H – – L Ｌ Ｈ

ASCI

I

: 1 1 0 6 0 0 0 1 0 0 0 3 C

R

LF

Hex
3A 31 31 30 36 30 30 30 31 30 30 30 33 –– –– 0

D

0A

 GX8 Design Studio 外部機器の接続マニュアル 22 / 26

Preset Multiple Register : 10

Slave機器側の400002 Registerに「000A（hex）」、「0102（hex）」の連続した二つのデータを入力する例により、「10」コマンドフレームを説明しま

す。（Error Code：90H）

■ RTU Mode

（Master → Slave : 要求フレーム ）

C
o
m

m
e
n
t

S
la

v
e

局
番

コ
マ
ン
ド

先
頭
機
器

Q
u
a
n
tity

 o
f R

e
g
iste

r

(W
o
rd

 C
o
u
n
t)

デ
ー
タ
数(B

y
te

)

データ チ
ェ
ッ
ク
コ
ー
ド

（
Ｃ
Ｒ
Ｃ
）

R
e
g
iste

r

4
0
0
0
2

R
e
g
iste

r

4
0
0
0
3

 Ｈ Ｌ Ｈ Ｌ H L H L Ｌ Ｈ

Hex 11 10 00 01 00 02 04 00 0A 01 02 –– ––

（Slave → Master : 応答フレーム）

C
o
m

m
e
n
t

S
la

v
e

局
番

コ
マ
ン
ド

先
頭
機
器

Q
u
a
n
tity

 o
f R

e
g
iste

r

(W
o
rd

 C
o
u
n
t)

チ
ェ
ッ
ク
コ
ー
ド

（
Ｃ
Ｒ
Ｃ
）

 Ｈ Ｌ Ｈ Ｌ Ｌ Ｈ

Hex 11 10 00 01 00 02 –– ––

■ ASCII Mode

（Master → Slave : 要求フレーム ）

co
m

m
e
n
t

H
e
a
d
e
r

S
la

v
e

局
番

コ
マ
ン
ド

先
頭
機
器

Q
u
a
n
tity

o
f

R
e
g
iste

r

(W
o
rd

 C
o
u
n
t)

デ
ー
タ
数(B

y
te

)

データ

R
e
g
iste

r

4
0
0
0
2

R
e
g
iste

r

4
0
0
0
3

 H L H L H – – L H – – L – L H – – L H – – L

ASCI

I

: 1 1 1 0 0 0 0 1 0 0 0 2 0 4 0 0 0 A 0 1 0 2

Hex
3

A

31 31 31 30 30 30 41 43 30 30 30 32 30 34 30 30 30 41 30 31 30 32

계속… チ
ェ
ッ
ク
コ
ー
ド

（
Ｃ
Ｒ
Ｃ
）

T
a
il

 Ｌ Ｈ

ASCI

I

 C

R

LF

Hex
–– –– 0

D

0A

（Slave → Master : 応答フレーム）

co
m

m
e
n
t

H
e
a
d
e
r

S
la

v
e

局
番

コ
マ
ン
ド

先
頭
機
器

Q
u
a
n
tity

 o
f R

e
g
iste

r

(W
o
rd

 C
o
u
n
t)

チ
ェ
ッ
ク
コ
ー
ド

（
Ｃ
Ｒ
Ｃ
）

T
a
il

 H L H L H – – L H – – L Ｌ Ｈ

ASCI

I

: 1 1 1 0 0 0 0 1 0 0 0 2 C

R

LF

 GX8 Design Studio 外部機器の接続マニュアル 23 / 26

Hex
3A 31 31 30 31 30 30 30 31 30 30 30 32 –– –– 0

D

0A

 GX8 Design Studio 外部機器の接続マニュアル 24 / 26

A.5 LRC/CRC Generation

(1) LRC Generation

The Longitudinal Redundancy Check (LRC) field is one byte, containing an 8–bit binary value. The LRC value is calculated

by the transmitting device, which appends the LRC to the message. The receiving device recalculates an LRC during receipt

of the message, and compares the calculated value to the actual value it received in the LRC field. If the two values are not

equal, an error results.

The LRC is calculated by adding together successive 8–bit bytes in the message, discarding any carries, and then two’s

complementing the result. The LRC is an 8–bit field, therefore each new addition of a character that would result in a value

higher than 255 decimal simply ‘rolls over’ the field’s value through zero. Because there is no ninth bit, the carry is

discarded automatically.

A procedure for generating an LRC is:

1. Add all bytes in the message, excluding the starting ‘colon’ and ending

CRLF. Add them into an 8–bit field, so that carries will be discarded.

2. Subtract the final field value from FF hex (all 1’s), GX8roduce the

ones–complement.

3. Add 1 produce the twos–complement.

– Placing the LRC into the Message

When the 8–bit LRC (2 ASCII characters) is transmitted in the message, the high–order character will be transmitted first,

followed by the low–order character.

For example, if the LRC value is 61 hex (0110 0001):

– Example

An example of a C language function performing LRC generation is shown below.

The function takes two arguments:

unsigned char *auchMsg ; // A pointer to the message buffer containing

// binary data to be used for generating the LRC

unsigned short usDataLen ; // The quantity of bytes in the message buffer.

The function returns the LRC as a type unsigned char.

– LRC Generation Function

static unsigned char LRC(auchMsg, usDataLen)

unsigned char *auchMsg ; /* message to calculate LRC upon */

unsigned short usDataLen ; /* quantity of bytes in message */

{

unsigned char uchLRC = 0 ; /* LRC char initialized */

while (usDataLen––) /* pass through message buffer */

uchLRC += *auchMsg++ ; /* add buffer byte without carry */

return ((unsigned char)(–((char)uchLRC))) ; /* return twos complement */

}

 GX8 Design Studio 外部機器の接続マニュアル 25 / 26

(2) CRC Generation

The Cyclical Redundancy Check (CRC) field is two bytes, containing a 16–bit binary value. The CRC value is calculated by

the transmitting device, which appends the CRC to the message. The receiving device recalculates a CRC during receipt of

the message, and compares the calculated value to the actual value it received in the CRC field. If the two values are not

equal, an error results.

The CRC is started by first preloading a 16–bit register to all 1’s. Then a process begins of applying successive 8–bit bytes

of the message to the current contents of the register. Only the eight bits of data in each character are used for generating

the CRC. Start and SGX8 bits, and the parity bit, do not apply to the CRC.

During generation of the CRC, each 8–bit character is exclusive ORed with the register contents. Then the result is shifted

in the direction of the least significant bit (LSB), with a zero filled into the most significant bit (MSB) position. The LSB is

extracted and examined. If the LSB was a 1, the register is then exclusive ORed with a preset, fixed value. If the LSB was a

0, no exclusive OR takes place.

This process is repeated until eight shifts have been performed. After the last (eighth) shift, the next 8–bit character is

exclusive ORed with the register’s current value, and the process repeats for eight more shifts as described above. The final

contents of the register, after all the characters of the message have been applied, is the CRC value.

A procedure for generating a CRC is:

1. Load a 16–bit register with FFFF hex (all 1’s). Call this the CRC register.

2. Exclusive OR the first 8–bit byte of the message with the low–order byte of the 16–bit CRC register, putting

the result in the CRC register.

3. Shift the CRC register one bit to the right (toward the LSB), zero–filling the MSB. Extract and examine the

LSB.

4. (If the LSB was 0): Repeat Step 3 (another shift). (If the LSB was 1): Exclusive OR the CRC register with the

polynomial value A001 hex (1010 0000 0000 0001).

5. Repeat Steps 3 and 4 until 8 shifts have been performed. When this is done, a complete 8–bit byte will have

been processed.

6. Repeat Steps 2 through 5 for the next 8–bit byte of the message. Continue doing this until all bytes have

been processed.

7. The final contents of the CRC register is the CRC value.

8. When the CRC is placed into the message, its upper and lower bytes must be swapped as described below.

– Placing the CRC into the Message

When the 16–bit CRC (two 8–bit bytes) is transmitted in the message, the low-order byte will be transmitted first,

followed by the high-order byte.

For example, if the CRC value is 1241 hex (0001 0010 0100 0001):

– Example

An example of a C language function performing CRC generation is shown on the following pages. All of the possible CRC

values are preloaded into two arrays, which are simply indexed as the function increments through the message buffer.

One array contains all of the 256 possible CRC values for the high byte of the 16–bit CRC field, and the other array

contains all of the values for the low byte. Indexing the CRC in this way provides faster execution than would be achieved

by calculating a new CRC value with each new character from the message buffer.

Note This function performs the swapping of the high/low CRC bytes internally. The bytes are already swapped

in the CRC value that is returned from the function. Therefore the CRC value returned from the function can be

directly placed into the message for transmission.

The function takes two arguments:

unsigned char *puchMsg ; //A pointer to the message buffer containing

//binary data to be used for generating the CRC

unsigned short usDataLen ; //The quantity of bytes in the message buffer.

The function returns the CRC as a type unsigned short.

 GX8 Design Studio 外部機器の接続マニュアル 26 / 26

– CRC Generation Function

unsigned short CRC16(puchMsg, usDataLen)

unsigned char *puchMsg ; /* message to calculate CRC upon */

unsigned short usDataLen ; /* quantity of bytes in message */

{

unsigned char uchCRCHi = 0xFF ; /* high byte of CRC initialized */

unsigned char uchCRCLo = 0xFF ; /* low byte of CRC initialized */

unsigned uIndex ; /* will index into CRC lookup table */

while (usDataLen––) /* pass through message buffer */

{

uIndex = uchCRCHi ^ *puchMsgg++ ; /* calculate the CRC */

uchCRCHi = uchCRCLo ^ auchCRCHi[uIndex} ;

uchCRCLo = auchCRCLo[uIndex] ;

}

return (uchCRCHi << 8 | uchCRCLo) ;

}

– High-Order Byte Table

/* Table of CRC values for high–order byte */

static unsigned char auchCRCHi[] = {

0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80,

0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1,

0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01,

0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40,

0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81,

0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,

0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00,

0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,

0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80,

0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,

0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01,

0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,

0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80,

0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40

} ;

– Low-Order Byte Table

/* Table of CRC values for low–order byte */

static char auchCRCLo[] = {

0x00, 0xC0, 0xC1, 0x01, 0xC3, 0x03, 0x02, 0xC2, 0xC6, 0x06, 0x07, 0xC7, 0x05, 0xC5, 0xC4, 0x04, 0xCC, 0x0C, 0x0D,

0xCD, 0x0F, 0xCF, 0xCE, 0x0E, 0x0A, 0xCA, 0xCB, 0x0B, 0xC9, 0x09, 0x08, 0xC8, 0xD8, 0x18, 0x19, 0xD9, 0x1B, 0xDB,

0xDA, 0x1A, 0x1E, 0xDE, 0xDF, 0x1F, 0xDD, 0x1D, 0x1C, 0xDC, 0x14, 0xD4, 0xD5, 0x15, 0xD7, 0x17, 0x16, 0xD6, 0xD2,

0x12, 0x13, 0xD3, 0x11, 0xD1, 0xD0, 0x10, 0xF0, 0x30, 0x31, 0xF1, 0x33, 0xF3, 0xF2, 0x32, 0x36, 0xF6, 0xF7, 0x37,

0xF5, 0x35, 0x34, 0xF4, 0x3C, 0xFC, 0xFD, 0x3D, 0xFF, 0x3F, 0x3E, 0xFE, 0xFA, 0x3A, 0x3B, 0xFB, 0x39, 0xF9, 0xF8,

0x38, 0x28, 0xE8, 0xE9, 0x29, 0xEB, 0x2B, 0x2A, 0xEA, 0xEE, 0x2E, 0x2F, 0xEF, 0x2D, 0xED, 0xEC, 0x2C, 0xE4, 0x24,

0x25, 0xE5, 0x27, 0xE7, 0xE6, 0x26, 0x22, 0xE2, 0xE3, 0x23, 0xE1, 0x21, 0x20, 0xE0, 0xA0, 0x60, 0x61, 0xA1, 0x63,

0xA3, 0xA2, 0x62, 0x66, 0xA6, 0xA7, 0x67, 0xA5, 0x65, 0x64, 0xA4, 0x6C, 0xAC, 0xAD, 0x6D, 0xAF, 0x6F, 0x6E, 0xAE,

0xAA, 0x6A, 0x6B, 0xAB, 0x69, 0xA9, 0xA8, 0x68, 0x78, 0xB8, 0xB9, 0x79, 0xBB, 0x7B, 0x7A, 0xBA, 0xBE, 0x7E, 0x7F,

0xBF, 0x7D, 0xBD, 0xBC, 0x7C, 0xB4, 0x74, 0x75, 0xB5, 0x77, 0xB7, 0xB6, 0x76, 0x72, 0xB2, 0xB3, 0x73, 0xB1, 0x71,

0x70, 0xB0, 0x50, 0x90, 0x91, 0x51, 0x93, 0x53, 0x52, 0x92, 0x96, 0x56, 0x57, 0x97, 0x55, 0x95, 0x94, 0x54, 0x9C,

0x5C, 0x5D, 0x9D, 0x5F, 0x9F, 0x9E, 0x5E, 0x5A, 0x9A, 0x9B, 0x5B, 0x99, 0x59, 0x58, 0x98, 0x88, 0x48, 0x49, 0x89,

0x4B, 0x8B, 0x8A, 0x4A, 0x4E, 0x8E, 0x8F, 0x4F, 0x8D, 0x4D, 0x4C, 0x8C, 0x44, 0x84, 0x85, 0x45, 0x87, 0x47, 0x46,

0x86, 0x82, 0x42, 0x43, 0x83, 0x41, 0x81, 0x80, 0x40

} ;

